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Altered fetal development of food intake regulatory system in 
hypothalamus can contribute to the etiology of obesity in later 
life. Both protein content and protein source in maternal diet 
during gestation and lactation affect hypothalamic develop-
ment of food intake regulatory system in fetus and neonate.  

Components of the central neural network for regulating food 
intake are present before birth in rodents and higher-order 
mammals [1-4]. The neuronal circuitry is not fully developed 
until 16 days after birth in rodents which is quite different from 
human and sheep [1,5,6]. In the rat, Neuropeptide Y (NPY) 
neurons first appear in the arcuate and dorsolateral hypothal-
amus at 14.5 days gestation [4,7,8] and thereafter, NPY mRNA 
expression rapidly increases between 2 and 15–16 days after 
birth and it returns to adult levels at approximately 30 days 
of age [1]. NPY receptors are present and functional at early 

life as evidenced by the observation that microinjection of NPY 
directly into the Paraventricular Nucleus (PVN) at 2 days af-
ter birth stimulates milk and water intake [9]. Moreover, vagal 
sensory information from the gastrointestinal tract relating 
to fullness may be an important factor in regulating food in-
take in the first week after birth since during this period is a 
relative dominance of NPY and alpha-melanocyte stimulating 
hormone ( -MSH) innervation of the PVN by efferents derived 
from the brain stem, rather than the arcuate nucleus [1]. How-
ever, NPY/Agouti-related peptide (AgRP) projections from 
the arcuate nucleus to the dorsomedial hypothalamic nucleus 
(DMN) are not complete until some 10–11 days after birth, and 

projections to the PVN do not fully develop until 15–16 days 

[1]. Peripheral leptin treatment at day 10 after birth reduces 
NPY mRNA expression in the rostral arcuate nucleus. However, 
it has little impact on food intake, which is in compliance with 
the lack of NPY projections within the hypothalamus during 
the early postnatal period [10]. Pro-opiomelanocortin (POMC), 
AgRP, and Melanocortin-4 receptor (MC4R) mRNA are also all 

present in the hypothalamus in early postnatal period. 

In rats, the perinatal period is a critical window for the pro-
gramming of postnatal appetite [11]. Plagemann and col-
leagues reported that increased nutritional intake due to small 
litters induced hyperphagia and obesity combined with hy-
perleptinemia, hyperglycemia, hyperinsulinemia, and insulin 
resistance in rats that causes various alterations in hypotha-
lamic structures, neuropeptide levels, neuronal activity and 
hormonal responsiveness [12-14]. It was associated with in-
creased in NPY and galanin expression and decreased respon-
siveness to leptin, insulin and neuropeptides within neurons 
of the arcuate nucleus (ARC) and PVN [15-17]. Daily insulin 

treatment between 8 and 11 days after birth also results in a 
greater body weight gain, chronic hyperinsulinemia, impaired 
glucose tolerance, hypertension and also morphological altera-
tions in hypothalamic structures that persist in adult life [18-
20]. It supports the notion that perinatal hyperinsulinaemia 
confers malformation of hypothalamic structures. 

Low protein diet fed throughout gestation and lactation pro-
voked hypoinsulinemia, normal leptin concentrations, an in-
crease in NPY levels in the arcuate nucleus, PVN and lateral 

hypothalamic area, and unchanged NPY levels in the ventro-
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medial nucleus (VMN) [21]. Food intake of the offspring was 
not measured. It is consistent with the observation that off-
spring born to dams fed the soy protein-based diet had higher 
food intake after weaning, higher hypothalamic mRNA expres-
sions of AgRP at weaning and relatively higher plasma concen-
trations of insulin in fetal period (day 20 gestation) compared 
with those from dams fed a casein-based diet [22].

Additionally, a low protein diet fed throughout gestation and 
lactation impairs hypothalamic mechanistic target of rapamy-
cin (mTOR) activation in adult rat offspring. mTOR is involved 
in the control of feeding behavior by integrating hormonal and 
nutrient signals in the hypothalamus; therefore, regulating en-
ergy homeostasis systematically. Disruption or impairment in 
mTOR signaling caused by perinatal protein restriction may be 
a possible mechanism in the developmental programming of 
metabolic disorders.

Guzman-Quevedo et al. [23] found that adult rats born to dams 
fed a low protein diet during gestation and lactation exhibit 
enhanced activation of hypothalamic mTOR in the fed state as 
well as impaired mTOR responses to fasting and re-feeding 
from one hypothalamic nucleus to another.  Protein restricted 
adult rats exhibited a decrease in number of phosphorylated 
rpS6 and pmTOR immunostained cells in the ventromedial nu-
cleus of hypothalamus (VMH) and ARC but increased numbers 
of pmTOR immunopositive cells in the PVN under ad libitum 
feeding conditions.  In controls, however, the phosphorylation 
of rpS6 and mTOR in the VMH decreased with fasting, whereas 
in malnourished rat offspring, fasting decreased the phosphor-
ylation of mTOR in the PVN of the hypothalamic nucleus. No 
differences in the number of POMC/pmTOR co-labelled cells 
were found between control and malnourished rats in the fed 
state and both groups exhibited a significant decrease in the 
activation of mTOR in POMC expressing neurons in response 
to fasting, suggesting that early protein restriction may not al-
ter the nutrient sensing function of mTOR in POMC neurons 
[23]. 

In conclusion, both protein content and protein source in ma-
ternal diet can alter the development of hypothalamic intake 
regulatory system and therefore influence the risk of obesity 
in later life. However, underlying mechanisms are still unclear 
and need further studies. 
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